agents-v2-py

Cloud, DevOps & Systèmes

|

Documentation

Azure AI Hosted Agents (Python)

Build container-based hosted agents using ImageBasedHostedAgentDefinition from the Azure AI Projects SDK.

Installation

pip install azure-ai-projects>=2.0.0b3 azure-identity

Minimum SDK Version: 2.0.0b3 or later required for hosted agent support.

Environment Variables

AZURE_AI_PROJECT_ENDPOINT=https://<resource>.services.ai.azure.com/api/projects/<project>

Prerequisites

Before creating hosted agents:

1.Container Image - Build and push to Azure Container Registry (ACR)
2.ACR Pull Permissions - Grant your project's managed identity AcrPull role on the ACR
3.Capability Host - Account-level capability host with enablePublicHostingEnvironment=true
4.SDK Version - Ensure azure-ai-projects>=2.0.0b3

Authentication

Always use DefaultAzureCredential:

from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient

credential = DefaultAzureCredential()
client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=credential
)

Core Workflow

1. Imports

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

2. Create Hosted Agent

client = AIProjectClient(
    endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    credential=DefaultAzureCredential()
)

agent = client.agents.create_version(
    agent_name="my-hosted-agent",
    definition=ImageBasedHostedAgentDefinition(
        container_protocol_versions=[
            ProtocolVersionRecord(protocol=AgentProtocol.RESPONSES, version="v1")
        ],
        cpu="1",
        memory="2Gi",
        image="myregistry.azurecr.io/my-agent:latest",
        tools=[{"type": "code_interpreter"}],
        environment_variables={
            "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
            "MODEL_NAME": "gpt-4o-mini"
        }
    )
)

print(f"Created agent: {agent.name} (version: {agent.version})")

3. List Agent Versions

versions = client.agents.list_versions(agent_name="my-hosted-agent")
for version in versions:
    print(f"Version: {version.version}, State: {version.state}")

4. Delete Agent Version

client.agents.delete_version(
    agent_name="my-hosted-agent",
    version=agent.version
)

ImageBasedHostedAgentDefinition Parameters

| Parameter | Type | Required | Description |

|-----------|------|----------|-------------|

| container_protocol_versions | list[ProtocolVersionRecord] | Yes | Protocol versions the agent supports |

| image | str | Yes | Full container image path (registry/image:tag) |

| cpu | str | No | CPU allocation (e.g., "1", "2") |

| memory | str | No | Memory allocation (e.g., "2Gi", "4Gi") |

| tools | list[dict] | No | Tools available to the agent |

| environment_variables | dict[str, str] | No | Environment variables for the container |

Protocol Versions

The container_protocol_versions parameter specifies which protocols your agent supports:

from azure.ai.projects.models import ProtocolVersionRecord, AgentProtocol

# RESPONSES protocol - standard agent responses
container_protocol_versions=[
    ProtocolVersionRecord(protocol=AgentProtocol.RESPONSES, version="v1")
]

Available Protocols:

| Protocol | Description |

|----------|-------------|

| AgentProtocol.RESPONSES | Standard response protocol for agent interactions |

Resource Allocation

Specify CPU and memory for your container:

definition=ImageBasedHostedAgentDefinition(
    container_protocol_versions=[...],
    image="myregistry.azurecr.io/my-agent:latest",
    cpu="2",      # 2 CPU cores
    memory="4Gi"  # 4 GiB memory
)

Resource Limits:

| Resource | Min | Max | Default |

|----------|-----|-----|---------|

| CPU | 0.5 | 4 | 1 |

| Memory | 1Gi | 8Gi | 2Gi |

Tools Configuration

Add tools to your hosted agent:

Code Interpreter

tools=[{"type": "code_interpreter"}]

MCP Tools

tools=[
    {"type": "code_interpreter"},
    {
        "type": "mcp",
        "server_label": "my-mcp-server",
        "server_url": "https://my-mcp-server.example.com"
    }
]

Multiple Tools

tools=[
    {"type": "code_interpreter"},
    {"type": "file_search"},
    {
        "type": "mcp",
        "server_label": "custom-tool",
        "server_url": "https://custom-tool.example.com"
    }
]

Environment Variables

Pass configuration to your container:

environment_variables={
    "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
    "MODEL_NAME": "gpt-4o-mini",
    "LOG_LEVEL": "INFO",
    "CUSTOM_CONFIG": "value"
}

Best Practice: Never hardcode secrets. Use environment variables or Azure Key Vault.

Complete Example

import os
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

def create_hosted_agent():
    """Create a hosted agent with custom container image."""
    
    client = AIProjectClient(
        endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
        credential=DefaultAzureCredential()
    )
    
    agent = client.agents.create_version(
        agent_name="data-processor-agent",
        definition=ImageBasedHostedAgentDefinition(
            container_protocol_versions=[
                ProtocolVersionRecord(
                    protocol=AgentProtocol.RESPONSES,
                    version="v1"
                )
            ],
            image="myregistry.azurecr.io/data-processor:v1.0",
            cpu="2",
            memory="4Gi",
            tools=[
                {"type": "code_interpreter"},
                {"type": "file_search"}
            ],
            environment_variables={
                "AZURE_AI_PROJECT_ENDPOINT": os.environ["AZURE_AI_PROJECT_ENDPOINT"],
                "MODEL_NAME": "gpt-4o-mini",
                "MAX_RETRIES": "3"
            }
        )
    )
    
    print(f"Created hosted agent: {agent.name}")
    print(f"Version: {agent.version}")
    print(f"State: {agent.state}")
    
    return agent

if __name__ == "__main__":
    create_hosted_agent()

Async Pattern

import os
from azure.identity.aio import DefaultAzureCredential
from azure.ai.projects.aio import AIProjectClient
from azure.ai.projects.models import (
    ImageBasedHostedAgentDefinition,
    ProtocolVersionRecord,
    AgentProtocol,
)

async def create_hosted_agent_async():
    """Create a hosted agent asynchronously."""
    
    async with DefaultAzureCredential() as credential:
        async with AIProjectClient(
            endpoint=os.environ["AZURE_AI_PROJECT_ENDPOINT"],
            credential=credential
        ) as client:
            agent = await client.agents.create_version(
                agent_name="async-agent",
                definition=ImageBasedHostedAgentDefinition(
                    container_protocol_versions=[
                        ProtocolVersionRecord(
                            protocol=AgentProtocol.RESPONSES,
                            version="v1"
                        )
                    ],
                    image="myregistry.azurecr.io/async-agent:latest",
                    cpu="1",
                    memory="2Gi"
                )
            )
            return agent

Common Errors

| Error | Cause | Solution |

|-------|-------|----------|

| ImagePullBackOff | ACR pull permission denied | Grant AcrPull role to project's managed identity |

| InvalidContainerImage | Image not found | Verify image path and tag exist in ACR |

| CapabilityHostNotFound | No capability host configured | Create account-level capability host |

| ProtocolVersionNotSupported | Invalid protocol version | Use AgentProtocol.RESPONSES with version "v1" |

Best Practices

1.Version Your Images - Use specific tags, not latest in production
2.Minimal Resources - Start with minimum CPU/memory, scale up as needed
3.Environment Variables - Use for all configuration, never hardcode
4.Error Handling - Wrap agent creation in try/except blocks
5.Cleanup - Delete unused agent versions to free resources

Reference Links

[Azure AI Projects SDK](https://pypi.org/project/azure-ai-projects/)
[Hosted Agents Documentation](https://learn.microsoft.com/azure/ai-services/agents/how-to/hosted-agents)
[Azure Container Registry](https://learn.microsoft.com/azure/container-registry/)
Utiliser l'Agent agents-v2-py - Outil & Compétence IA | Skills Catalogue | Skills Catalogue