azure-ai-document-intelligence-ts
Cloud, DevOps & SystèmesExtract text, tables, and structured data from documents using Azure Document Intelligence (@azure-rest/ai-document-intelligence). Use when processing invoices, receipts, IDs, forms, or building custom document models.
Documentation
Azure Document Intelligence REST SDK for TypeScript
Extract text, tables, and structured data from documents using prebuilt and custom models.
Installation
npm install @azure-rest/ai-document-intelligence @azure/identityEnvironment Variables
DOCUMENT_INTELLIGENCE_ENDPOINT=https://<resource>.cognitiveservices.azure.com
DOCUMENT_INTELLIGENCE_API_KEY=<api-key>Authentication
Important: This is a REST client. DocumentIntelligence is a function, not a class.
DefaultAzureCredential
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
import { DefaultAzureCredential } from "@azure/identity";
const client = DocumentIntelligence(
process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
new DefaultAzureCredential()
);API Key
import DocumentIntelligence from "@azure-rest/ai-document-intelligence";
const client = DocumentIntelligence(
process.env.DOCUMENT_INTELLIGENCE_ENDPOINT!,
{ key: process.env.DOCUMENT_INTELLIGENCE_API_KEY! }
);Analyze Document (URL)
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({
contentType: "application/json",
body: {
urlSource: "https://example.com/document.pdf"
},
queryParameters: { locale: "en-US" }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
console.log("Pages:", result.analyzeResult?.pages?.length);
console.log("Tables:", result.analyzeResult?.tables?.length);Analyze Document (Local File)
import { readFile } from "node:fs/promises";
const fileBuffer = await readFile("./document.pdf");
const base64Source = fileBuffer.toString("base64");
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
.post({
contentType: "application/json",
body: { base64Source }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;Prebuilt Models
| Model ID | Description |
|----------|-------------|
| prebuilt-read | OCR - text and language extraction |
| prebuilt-layout | Text, tables, selection marks, structure |
| prebuilt-invoice | Invoice fields |
| prebuilt-receipt | Receipt fields |
| prebuilt-idDocument | ID document fields |
| prebuilt-tax.us.w2 | W-2 tax form fields |
| prebuilt-healthInsuranceCard.us | Health insurance card fields |
| prebuilt-contract | Contract fields |
| prebuilt-bankStatement.us | Bank statement fields |
Extract Invoice Fields
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-invoice")
.post({
contentType: "application/json",
body: { urlSource: invoiceUrl }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
const invoice = result.analyzeResult?.documents?.[0];
if (invoice) {
console.log("Vendor:", invoice.fields?.VendorName?.content);
console.log("Total:", invoice.fields?.InvoiceTotal?.content);
console.log("Due Date:", invoice.fields?.DueDate?.content);
}Extract Receipt Fields
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-receipt")
.post({
contentType: "application/json",
body: { urlSource: receiptUrl }
});
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;
const receipt = result.analyzeResult?.documents?.[0];
if (receipt) {
console.log("Merchant:", receipt.fields?.MerchantName?.content);
console.log("Total:", receipt.fields?.Total?.content);
for (const item of receipt.fields?.Items?.values || []) {
console.log("Item:", item.properties?.Description?.content);
console.log("Price:", item.properties?.TotalPrice?.content);
}
}List Document Models
import DocumentIntelligence, { isUnexpected, paginate } from "@azure-rest/ai-document-intelligence";
const response = await client.path("/documentModels").get();
if (isUnexpected(response)) {
throw response.body.error;
}
for await (const model of paginate(client, response)) {
console.log(model.modelId);
}Build Custom Model
const initialResponse = await client.path("/documentModels:build").post({
body: {
modelId: "my-custom-model",
description: "Custom model for purchase orders",
buildMode: "template", // or "neural"
azureBlobSource: {
containerUrl: process.env.TRAINING_CONTAINER_SAS_URL!,
prefix: "training-data/"
}
}
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Model built:", result.body);Build Document Classifier
import { DocumentClassifierBuildOperationDetailsOutput } from "@azure-rest/ai-document-intelligence";
const containerSasUrl = process.env.TRAINING_CONTAINER_SAS_URL!;
const initialResponse = await client.path("/documentClassifiers:build").post({
body: {
classifierId: "my-classifier",
description: "Invoice vs Receipt classifier",
docTypes: {
invoices: {
azureBlobSource: { containerUrl: containerSasUrl, prefix: "invoices/" }
},
receipts: {
azureBlobSource: { containerUrl: containerSasUrl, prefix: "receipts/" }
}
}
}
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = (await poller.pollUntilDone()).body as DocumentClassifierBuildOperationDetailsOutput;
console.log("Classifier:", result.result?.classifierId);Classify Document
const initialResponse = await client
.path("/documentClassifiers/{classifierId}:analyze", "my-classifier")
.post({
contentType: "application/json",
body: { urlSource: documentUrl },
queryParameters: { split: "auto" }
});
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
const poller = getLongRunningPoller(client, initialResponse);
const result = await poller.pollUntilDone();
console.log("Classification:", result.body.analyzeResult?.documents);Get Service Info
const response = await client.path("/info").get();
if (isUnexpected(response)) {
throw response.body.error;
}
console.log("Custom model limit:", response.body.customDocumentModels.limit);
console.log("Custom model count:", response.body.customDocumentModels.count);Polling Pattern
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
AnalyzeOperationOutput
} from "@azure-rest/ai-document-intelligence";
// 1. Start operation
const initialResponse = await client
.path("/documentModels/{modelId}:analyze", "prebuilt-layout")
.post({ contentType: "application/json", body: { urlSource } });
// 2. Check for errors
if (isUnexpected(initialResponse)) {
throw initialResponse.body.error;
}
// 3. Create poller
const poller = getLongRunningPoller(client, initialResponse);
// 4. Optional: Monitor progress
poller.onProgress((state) => {
console.log("Status:", state.status);
});
// 5. Wait for completion
const result = (await poller.pollUntilDone()).body as AnalyzeOperationOutput;Key Types
import DocumentIntelligence, {
isUnexpected,
getLongRunningPoller,
paginate,
parseResultIdFromResponse,
AnalyzeOperationOutput,
DocumentClassifierBuildOperationDetailsOutput
} from "@azure-rest/ai-document-intelligence";Best Practices
paginate() helper for listing modelsCompétences similaires
Explorez d'autres agents de la catégorie Cloud, DevOps & Systèmes
azure-compute-batch-java
|
aws-serverless
"Specialized skill for building production-ready serverless applications on AWS. Covers Lambda functions, API Gateway, DynamoDB, SQS/SNS event-driven patterns, SAM/CDK deployment, and cold start optimization."
azure-eventgrid-dotnet
|