azure-monitor-opentelemetry-ts
Cloud, DevOps & SystèmesInstrument applications with Azure Monitor and OpenTelemetry for JavaScript (@azure/monitor-opentelemetry). Use when adding distributed tracing, metrics, and logs to Node.js applications with Application Insights.
Documentation
Azure Monitor OpenTelemetry SDK for TypeScript
Auto-instrument Node.js applications with distributed tracing, metrics, and logs.
Installation
# Distro (recommended - auto-instrumentation)
npm install @azure/monitor-opentelemetry
# Low-level exporters (custom OpenTelemetry setup)
npm install @azure/monitor-opentelemetry-exporter
# Custom logs ingestion
npm install @azure/monitor-ingestionEnvironment Variables
APPLICATIONINSIGHTS_CONNECTION_STRING=InstrumentationKey=...;IngestionEndpoint=...Quick Start (Auto-Instrumentation)
IMPORTANT: Call useAzureMonitor() BEFORE importing other modules.
import { useAzureMonitor } from "@azure/monitor-opentelemetry";
useAzureMonitor({
azureMonitorExporterOptions: {
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
}
});
// Now import your application
import express from "express";
const app = express();ESM Support (Node.js 18.19+)
node --import @azure/monitor-opentelemetry/loader ./dist/index.jspackage.json:
{
"scripts": {
"start": "node --import @azure/monitor-opentelemetry/loader ./dist/index.js"
}
}Full Configuration
import { useAzureMonitor, AzureMonitorOpenTelemetryOptions } from "@azure/monitor-opentelemetry";
import { resourceFromAttributes } from "@opentelemetry/resources";
const options: AzureMonitorOpenTelemetryOptions = {
azureMonitorExporterOptions: {
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING,
storageDirectory: "/path/to/offline/storage",
disableOfflineStorage: false
},
// Sampling
samplingRatio: 1.0, // 0-1, percentage of traces
// Features
enableLiveMetrics: true,
enableStandardMetrics: true,
enablePerformanceCounters: true,
// Instrumentation libraries
instrumentationOptions: {
azureSdk: { enabled: true },
http: { enabled: true },
mongoDb: { enabled: true },
mySql: { enabled: true },
postgreSql: { enabled: true },
redis: { enabled: true },
bunyan: { enabled: false },
winston: { enabled: false }
},
// Custom resource
resource: resourceFromAttributes({ "service.name": "my-service" })
};
useAzureMonitor(options);Custom Traces
import { trace } from "@opentelemetry/api";
const tracer = trace.getTracer("my-tracer");
const span = tracer.startSpan("doWork");
try {
span.setAttribute("component", "worker");
span.setAttribute("operation.id", "42");
span.addEvent("processing started");
// Your work here
} catch (error) {
span.recordException(error as Error);
span.setStatus({ code: 2, message: (error as Error).message });
} finally {
span.end();
}Custom Metrics
import { metrics } from "@opentelemetry/api";
const meter = metrics.getMeter("my-meter");
// Counter
const counter = meter.createCounter("requests_total");
counter.add(1, { route: "/api/users", method: "GET" });
// Histogram
const histogram = meter.createHistogram("request_duration_ms");
histogram.record(150, { route: "/api/users" });
// Observable Gauge
const gauge = meter.createObservableGauge("active_connections");
gauge.addCallback((result) => {
result.observe(getActiveConnections(), { pool: "main" });
});Manual Exporter Setup
Trace Exporter
import { AzureMonitorTraceExporter } from "@azure/monitor-opentelemetry-exporter";
import { NodeTracerProvider, BatchSpanProcessor } from "@opentelemetry/sdk-trace-node";
const exporter = new AzureMonitorTraceExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const provider = new NodeTracerProvider({
spanProcessors: [new BatchSpanProcessor(exporter)]
});
provider.register();Metric Exporter
import { AzureMonitorMetricExporter } from "@azure/monitor-opentelemetry-exporter";
import { PeriodicExportingMetricReader, MeterProvider } from "@opentelemetry/sdk-metrics";
import { metrics } from "@opentelemetry/api";
const exporter = new AzureMonitorMetricExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const meterProvider = new MeterProvider({
readers: [new PeriodicExportingMetricReader({ exporter })]
});
metrics.setGlobalMeterProvider(meterProvider);Log Exporter
import { AzureMonitorLogExporter } from "@azure/monitor-opentelemetry-exporter";
import { BatchLogRecordProcessor, LoggerProvider } from "@opentelemetry/sdk-logs";
import { logs } from "@opentelemetry/api-logs";
const exporter = new AzureMonitorLogExporter({
connectionString: process.env.APPLICATIONINSIGHTS_CONNECTION_STRING
});
const loggerProvider = new LoggerProvider();
loggerProvider.addLogRecordProcessor(new BatchLogRecordProcessor(exporter));
logs.setGlobalLoggerProvider(loggerProvider);Custom Logs Ingestion
import { DefaultAzureCredential } from "@azure/identity";
import { LogsIngestionClient, isAggregateLogsUploadError } from "@azure/monitor-ingestion";
const endpoint = "https://<dce>.ingest.monitor.azure.com";
const ruleId = "<data-collection-rule-id>";
const streamName = "Custom-MyTable_CL";
const client = new LogsIngestionClient(endpoint, new DefaultAzureCredential());
const logs = [
{
Time: new Date().toISOString(),
Computer: "Server1",
Message: "Application started",
Level: "Information"
}
];
try {
await client.upload(ruleId, streamName, logs);
} catch (error) {
if (isAggregateLogsUploadError(error)) {
for (const uploadError of error.errors) {
console.error("Failed logs:", uploadError.failedLogs);
}
}
}Custom Span Processor
import { SpanProcessor, ReadableSpan } from "@opentelemetry/sdk-trace-base";
import { Span, Context, SpanKind, TraceFlags } from "@opentelemetry/api";
import { useAzureMonitor } from "@azure/monitor-opentelemetry";
class FilteringSpanProcessor implements SpanProcessor {
forceFlush(): Promise<void> { return Promise.resolve(); }
shutdown(): Promise<void> { return Promise.resolve(); }
onStart(span: Span, context: Context): void {}
onEnd(span: ReadableSpan): void {
// Add custom attributes
span.attributes["CustomDimension"] = "value";
// Filter out internal spans
if (span.kind === SpanKind.INTERNAL) {
span.spanContext().traceFlags = TraceFlags.NONE;
}
}
}
useAzureMonitor({
spanProcessors: [new FilteringSpanProcessor()]
});Sampling
import { ApplicationInsightsSampler } from "@azure/monitor-opentelemetry-exporter";
import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
// Sample 75% of traces
const sampler = new ApplicationInsightsSampler(0.75);
const provider = new NodeTracerProvider({ sampler });Shutdown
import { useAzureMonitor, shutdownAzureMonitor } from "@azure/monitor-opentelemetry";
useAzureMonitor();
// On application shutdown
process.on("SIGTERM", async () => {
await shutdownAzureMonitor();
process.exit(0);
});Key Types
import {
useAzureMonitor,
shutdownAzureMonitor,
AzureMonitorOpenTelemetryOptions,
InstrumentationOptions
} from "@azure/monitor-opentelemetry";
import {
AzureMonitorTraceExporter,
AzureMonitorMetricExporter,
AzureMonitorLogExporter,
ApplicationInsightsSampler,
AzureMonitorExporterOptions
} from "@azure/monitor-opentelemetry-exporter";
import {
LogsIngestionClient,
isAggregateLogsUploadError
} from "@azure/monitor-ingestion";Best Practices
--import @azure/monitor-opentelemetry/loadershutdownAzureMonitor() to flush telemetryCompétences similaires
Explorez d'autres agents de la catégorie Cloud, DevOps & Systèmes
azure-communication-callingserver-java
Azure Communication Services CallingServer (legacy) Java SDK. Note - This SDK is deprecated. Use azure-communication-callautomation instead for new projects. Only use this skill when maintaining legacy code.
azure-ai-voicelive-py
Build real-time voice AI applications using Azure AI Voice Live SDK (azure-ai-voicelive). Use this skill when creating Python applications that need real-time bidirectional audio communication with Azure AI, including voice assistants, voice-enabled chatbots, real-time speech-to-speech translation, voice-driven avatars, or any WebSocket-based audio streaming with AI models. Supports Server VAD (Voice Activity Detection), turn-based conversation, function calling, MCP tools, avatar integration, and transcription.
azure-communication-callautomation-java
Build call automation workflows with Azure Communication Services Call Automation Java SDK. Use when implementing IVR systems, call routing, call recording, DTMF recognition, text-to-speech, or AI-powered call flows.