azure-search-documents-py

Cloud, DevOps & Systèmes

|

Documentation

Azure AI Search SDK for Python

Full-text, vector, and hybrid search with AI enrichment capabilities.

Installation

pip install azure-search-documents

Environment Variables

AZURE_SEARCH_ENDPOINT=https://<service-name>.search.windows.net
AZURE_SEARCH_API_KEY=<your-api-key>
AZURE_SEARCH_INDEX_NAME=<your-index-name>

Authentication

API Key

from azure.search.documents import SearchClient
from azure.core.credentials import AzureKeyCredential

client = SearchClient(
    endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
    index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
    credential=AzureKeyCredential(os.environ["AZURE_SEARCH_API_KEY"])
)

Entra ID (Recommended)

from azure.search.documents import SearchClient
from azure.identity import DefaultAzureCredential

client = SearchClient(
    endpoint=os.environ["AZURE_SEARCH_ENDPOINT"],
    index_name=os.environ["AZURE_SEARCH_INDEX_NAME"],
    credential=DefaultAzureCredential()
)

Client Types

| Client | Purpose |

|--------|---------|

| SearchClient | Search and document operations |

| SearchIndexClient | Index management, synonym maps |

| SearchIndexerClient | Indexers, data sources, skillsets |

Create Index with Vector Field

from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
    SearchIndex,
    SearchField,
    SearchFieldDataType,
    VectorSearch,
    HnswAlgorithmConfiguration,
    VectorSearchProfile,
    SearchableField,
    SimpleField
)

index_client = SearchIndexClient(endpoint, AzureKeyCredential(key))

fields = [
    SimpleField(name="id", type=SearchFieldDataType.String, key=True),
    SearchableField(name="title", type=SearchFieldDataType.String),
    SearchableField(name="content", type=SearchFieldDataType.String),
    SearchField(
        name="content_vector",
        type=SearchFieldDataType.Collection(SearchFieldDataType.Single),
        searchable=True,
        vector_search_dimensions=1536,
        vector_search_profile_name="my-vector-profile"
    )
]

vector_search = VectorSearch(
    algorithms=[
        HnswAlgorithmConfiguration(name="my-hnsw")
    ],
    profiles=[
        VectorSearchProfile(
            name="my-vector-profile",
            algorithm_configuration_name="my-hnsw"
        )
    ]
)

index = SearchIndex(
    name="my-index",
    fields=fields,
    vector_search=vector_search
)

index_client.create_or_update_index(index)

Upload Documents

from azure.search.documents import SearchClient

client = SearchClient(endpoint, "my-index", AzureKeyCredential(key))

documents = [
    {
        "id": "1",
        "title": "Azure AI Search",
        "content": "Full-text and vector search service",
        "content_vector": [0.1, 0.2, ...]  # 1536 dimensions
    }
]

result = client.upload_documents(documents)
print(f"Uploaded {len(result)} documents")

Keyword Search

results = client.search(
    search_text="azure search",
    select=["id", "title", "content"],
    top=10
)

for result in results:
    print(f"{result['title']}: {result['@search.score']}")

Vector Search

from azure.search.documents.models import VectorizedQuery

# Your query embedding (1536 dimensions)
query_vector = get_embedding("semantic search capabilities")

vector_query = VectorizedQuery(
    vector=query_vector,
    k_nearest_neighbors=10,
    fields="content_vector"
)

results = client.search(
    vector_queries=[vector_query],
    select=["id", "title", "content"]
)

for result in results:
    print(f"{result['title']}: {result['@search.score']}")

Hybrid Search (Vector + Keyword)

from azure.search.documents.models import VectorizedQuery

vector_query = VectorizedQuery(
    vector=query_vector,
    k_nearest_neighbors=10,
    fields="content_vector"
)

results = client.search(
    search_text="azure search",
    vector_queries=[vector_query],
    select=["id", "title", "content"],
    top=10
)

Semantic Ranking

from azure.search.documents.models import QueryType

results = client.search(
    search_text="what is azure search",
    query_type=QueryType.SEMANTIC,
    semantic_configuration_name="my-semantic-config",
    select=["id", "title", "content"],
    top=10
)

for result in results:
    print(f"{result['title']}")
    if result.get("@search.captions"):
        print(f"  Caption: {result['@search.captions'][0].text}")

Filters

results = client.search(
    search_text="*",
    filter="category eq 'Technology' and rating gt 4",
    order_by=["rating desc"],
    select=["id", "title", "category", "rating"]
)

Facets

results = client.search(
    search_text="*",
    facets=["category,count:10", "rating"],
    top=0  # Only get facets, no documents
)

for facet_name, facet_values in results.get_facets().items():
    print(f"{facet_name}:")
    for facet in facet_values:
        print(f"  {facet['value']}: {facet['count']}")

Autocomplete & Suggest

# Autocomplete
results = client.autocomplete(
    search_text="sea",
    suggester_name="my-suggester",
    mode="twoTerms"
)

# Suggest
results = client.suggest(
    search_text="sea",
    suggester_name="my-suggester",
    select=["title"]
)

Indexer with Skillset

from azure.search.documents.indexes import SearchIndexerClient
from azure.search.documents.indexes.models import (
    SearchIndexer,
    SearchIndexerDataSourceConnection,
    SearchIndexerSkillset,
    EntityRecognitionSkill,
    InputFieldMappingEntry,
    OutputFieldMappingEntry
)

indexer_client = SearchIndexerClient(endpoint, AzureKeyCredential(key))

# Create data source
data_source = SearchIndexerDataSourceConnection(
    name="my-datasource",
    type="azureblob",
    connection_string=connection_string,
    container={"name": "documents"}
)
indexer_client.create_or_update_data_source_connection(data_source)

# Create skillset
skillset = SearchIndexerSkillset(
    name="my-skillset",
    skills=[
        EntityRecognitionSkill(
            inputs=[InputFieldMappingEntry(name="text", source="/document/content")],
            outputs=[OutputFieldMappingEntry(name="organizations", target_name="organizations")]
        )
    ]
)
indexer_client.create_or_update_skillset(skillset)

# Create indexer
indexer = SearchIndexer(
    name="my-indexer",
    data_source_name="my-datasource",
    target_index_name="my-index",
    skillset_name="my-skillset"
)
indexer_client.create_or_update_indexer(indexer)

Best Practices

1.Use hybrid search for best relevance combining vector and keyword
2.Enable semantic ranking for natural language queries
3.Index in batches of 100-1000 documents for efficiency
4.Use filters to narrow results before ranking
5.Configure vector dimensions to match your embedding model
6.Use HNSW algorithm for large-scale vector search
7.Create suggesters at index creation time (cannot add later)

Reference Files

| File | Contents |

|------|----------|

| [references/vector-search.md](references/vector-search.md) | HNSW configuration, integrated vectorization, multi-vector queries |

| [references/semantic-ranking.md](references/semantic-ranking.md) | Semantic configuration, captions, answers, hybrid patterns |

| [scripts/setup_vector_index.py](scripts/setup_vector_index.py) | CLI script to create vector-enabled search index |

---

Additional Azure AI Search Patterns

Azure AI Search Python SDK

Write clean, idiomatic Python code for Azure AI Search using azure-search-documents.

Installation

pip install azure-search-documents azure-identity

Environment Variables

AZURE_SEARCH_ENDPOINT=https://<search-service>.search.windows.net
AZURE_SEARCH_INDEX_NAME=<index-name>
# For API key auth (not recommended for production)
AZURE_SEARCH_API_KEY=<api-key>

Authentication

DefaultAzureCredential (preferred):

from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient

credential = DefaultAzureCredential()
client = SearchClient(endpoint, index_name, credential)

API Key:

from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient

client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))

Client Selection

| Client | Purpose |

|--------|---------|

| SearchClient | Query indexes, upload/update/delete documents |

| SearchIndexClient | Create/manage indexes, knowledge sources, knowledge bases |

| SearchIndexerClient | Manage indexers, skillsets, data sources |

| KnowledgeBaseRetrievalClient | Agentic retrieval with LLM-powered Q&A |

Index Creation Pattern

from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
    SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
    HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
    AzureOpenAIVectorizerParameters, SemanticSearch,
    SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)

index = SearchIndex(
    name=index_name,
    fields=[
        SearchField(name="id", type="Edm.String", key=True),
        SearchField(name="content", type="Edm.String", searchable=True),
        SearchField(name="embedding", type="Collection(Edm.Single)",
                   vector_search_dimensions=3072,
                   vector_search_profile_name="vector-profile"),
    ],
    vector_search=VectorSearch(
        profiles=[VectorSearchProfile(
            name="vector-profile",
            algorithm_configuration_name="hnsw-algo",
            vectorizer_name="openai-vectorizer"
        )],
        algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
        vectorizers=[AzureOpenAIVectorizer(
            vectorizer_name="openai-vectorizer",
            parameters=AzureOpenAIVectorizerParameters(
                resource_url=aoai_endpoint,
                deployment_name=embedding_deployment,
                model_name=embedding_model
            )
        )]
    ),
    semantic_search=SemanticSearch(
        default_configuration_name="semantic-config",
        configurations=[SemanticConfiguration(
            name="semantic-config",
            prioritized_fields=SemanticPrioritizedFields(
                content_fields=[SemanticField(field_name="content")]
            )
        )]
    )
)

index_client = SearchIndexClient(endpoint, credential)
index_client.create_or_update_index(index)

Document Operations

from azure.search.documents import SearchIndexingBufferedSender

# Batch upload with automatic batching
with SearchIndexingBufferedSender(endpoint, index_name, credential) as sender:
    sender.upload_documents(documents)

# Direct operations via SearchClient
search_client = SearchClient(endpoint, index_name, credential)
search_client.upload_documents(documents)      # Add new
search_client.merge_documents(documents)       # Update existing
search_client.merge_or_upload_documents(documents)  # Upsert
search_client.delete_documents(documents)      # Remove

Search Patterns

# Basic search
results = search_client.search(search_text="query")

# Vector search
from azure.search.documents.models import VectorizedQuery

results = search_client.search(
    search_text=None,
    vector_queries=[VectorizedQuery(
        vector=embedding,
        k_nearest_neighbors=5,
        fields="embedding"
    )]
)

# Hybrid search (vector + keyword)
results = search_client.search(
    search_text="query",
    vector_queries=[VectorizedQuery(vector=embedding, k_nearest_neighbors=5, fields="embedding")],
    query_type="semantic",
    semantic_configuration_name="semantic-config"
)

# With filters
results = search_client.search(
    search_text="query",
    filter="category eq 'technology'",
    select=["id", "title", "content"],
    top=10
)

Agentic Retrieval (Knowledge Bases)

For LLM-powered Q&A with answer synthesis, see [references/agentic-retrieval.md](references/agentic-retrieval.md).

Key concepts:

Knowledge Source: Points to a search index
Knowledge Base: Wraps knowledge sources + LLM for query planning and synthesis
Output modes: EXTRACTIVE_DATA (raw chunks) or ANSWER_SYNTHESIS (LLM-generated answers)

Async Pattern

from azure.search.documents.aio import SearchClient

async with SearchClient(endpoint, index_name, credential) as client:
    results = await client.search(search_text="query")
    async for result in results:
        print(result["title"])

Best Practices

1.Use environment variables for endpoints, keys, and deployment names
2.Prefer DefaultAzureCredential over API keys for production
3.Use SearchIndexingBufferedSender for batch uploads (handles batching/retries)
4.Always define semantic configuration for agentic retrieval indexes
5.Use create_or_update_index for idempotent index creation
6.Close clients with context managers or explicit close()

Field Types Reference

| EDM Type | Python | Notes |

|----------|--------|-------|

| Edm.String | str | Searchable text |

| Edm.Int32 | int | Integer |

| Edm.Int64 | int | Long integer |

| Edm.Double | float | Floating point |

| Edm.Boolean | bool | True/False |

| Edm.DateTimeOffset | datetime | ISO 8601 |

| Collection(Edm.Single) | List[float] | Vector embeddings |

| Collection(Edm.String) | List[str] | String arrays |

Error Handling

from azure.core.exceptions import (
    HttpResponseError,
    ResourceNotFoundError,
    ResourceExistsError
)

try:
    result = search_client.get_document(key="123")
except ResourceNotFoundError:
    print("Document not found")
except HttpResponseError as e:
    print(f"Search error: {e.message}")
Utiliser l'Agent azure-search-documents-py - Outil & Compétence IA | Skills Catalogue | Skills Catalogue