cc-skill-project-guidelines-example
Frontend & Expérience UXProject Guidelines Skill (Example)
Documentation
Project Guidelines Skill (Example)
This is an example of a project-specific skill. Use this as a template for your own projects.
Based on a real production application: [Zenith](https://zenith.chat) - AI-powered customer discovery platform.
---
When to Use
Reference this skill when working on the specific project it's designed for. Project skills contain:
---
Architecture Overview
Tech Stack:
Services:
┌─────────────────────────────────────────────────────────────┐
│ Frontend │
│ Next.js 15 + TypeScript + TailwindCSS │
│ Deployed: Vercel / Cloud Run │
└─────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ Backend │
│ FastAPI + Python 3.11 + Pydantic │
│ Deployed: Cloud Run │
└─────────────────────────────────────────────────────────────┘
│
┌───────────────┼───────────────┐
▼ ▼ ▼
┌──────────┐ ┌──────────┐ ┌──────────┐
│ Supabase │ │ Claude │ │ Redis │
│ Database │ │ API │ │ Cache │
└──────────┘ └──────────┘ └──────────┘---
File Structure
project/
├── frontend/
│ └── src/
│ ├── app/ # Next.js app router pages
│ │ ├── api/ # API routes
│ │ ├── (auth)/ # Auth-protected routes
│ │ └── workspace/ # Main app workspace
│ ├── components/ # React components
│ │ ├── ui/ # Base UI components
│ │ ├── forms/ # Form components
│ │ └── layouts/ # Layout components
│ ├── hooks/ # Custom React hooks
│ ├── lib/ # Utilities
│ ├── types/ # TypeScript definitions
│ └── config/ # Configuration
│
├── backend/
│ ├── routers/ # FastAPI route handlers
│ ├── models.py # Pydantic models
│ ├── main.py # FastAPI app entry
│ ├── auth_system.py # Authentication
│ ├── database.py # Database operations
│ ├── services/ # Business logic
│ └── tests/ # pytest tests
│
├── deploy/ # Deployment configs
├── docs/ # Documentation
└── scripts/ # Utility scripts---
Code Patterns
API Response Format (FastAPI)
from pydantic import BaseModel
from typing import Generic, TypeVar, Optional
T = TypeVar('T')
class ApiResponse(BaseModel, Generic[T]):
success: bool
data: Optional[T] = None
error: Optional[str] = None
@classmethod
def ok(cls, data: T) -> "ApiResponse[T]":
return cls(success=True, data=data)
@classmethod
def fail(cls, error: str) -> "ApiResponse[T]":
return cls(success=False, error=error)Frontend API Calls (TypeScript)
interface ApiResponse<T> {
success: boolean
data?: T
error?: string
}
async function fetchApi<T>(
endpoint: string,
options?: RequestInit
): Promise<ApiResponse<T>> {
try {
const response = await fetch(`/api${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
...options?.headers,
},
})
if (!response.ok) {
return { success: false, error: `HTTP ${response.status}` }
}
return await response.json()
} catch (error) {
return { success: false, error: String(error) }
}
}Claude AI Integration (Structured Output)
from anthropic import Anthropic
from pydantic import BaseModel
class AnalysisResult(BaseModel):
summary: str
key_points: list[str]
confidence: float
async def analyze_with_claude(content: str) -> AnalysisResult:
client = Anthropic()
response = client.messages.create(
model="claude-sonnet-4-5-20250514",
max_tokens=1024,
messages=[{"role": "user", "content": content}],
tools=[{
"name": "provide_analysis",
"description": "Provide structured analysis",
"input_schema": AnalysisResult.model_json_schema()
}],
tool_choice={"type": "tool", "name": "provide_analysis"}
)
# Extract tool use result
tool_use = next(
block for block in response.content
if block.type == "tool_use"
)
return AnalysisResult(**tool_use.input)Custom Hooks (React)
import { useState, useCallback } from 'react'
interface UseApiState<T> {
data: T | null
loading: boolean
error: string | null
}
export function useApi<T>(
fetchFn: () => Promise<ApiResponse<T>>
) {
const [state, setState] = useState<UseApiState<T>>({
data: null,
loading: false,
error: null,
})
const execute = useCallback(async () => {
setState(prev => ({ ...prev, loading: true, error: null }))
const result = await fetchFn()
if (result.success) {
setState({ data: result.data!, loading: false, error: null })
} else {
setState({ data: null, loading: false, error: result.error! })
}
}, [fetchFn])
return { ...state, execute }
}---
Testing Requirements
Backend (pytest)
# Run all tests
poetry run pytest tests/
# Run with coverage
poetry run pytest tests/ --cov=. --cov-report=html
# Run specific test file
poetry run pytest tests/test_auth.py -vTest structure:
import pytest
from httpx import AsyncClient
from main import app
@pytest.fixture
async def client():
async with AsyncClient(app=app, base_url="http://test") as ac:
yield ac
@pytest.mark.asyncio
async def test_health_check(client: AsyncClient):
response = await client.get("/health")
assert response.status_code == 200
assert response.json()["status"] == "healthy"Frontend (React Testing Library)
# Run tests
npm run test
# Run with coverage
npm run test -- --coverage
# Run E2E tests
npm run test:e2eTest structure:
import { render, screen, fireEvent } from '@testing-library/react'
import { WorkspacePanel } from './WorkspacePanel'
describe('WorkspacePanel', () => {
it('renders workspace correctly', () => {
render(<WorkspacePanel />)
expect(screen.getByRole('main')).toBeInTheDocument()
})
it('handles session creation', async () => {
render(<WorkspacePanel />)
fireEvent.click(screen.getByText('New Session'))
expect(await screen.findByText('Session created')).toBeInTheDocument()
})
})---
Deployment Workflow
Pre-Deployment Checklist
npm run build succeeds (frontend)poetry run pytest passes (backend)Deployment Commands
# Build and deploy frontend
cd frontend && npm run build
gcloud run deploy frontend --source .
# Build and deploy backend
cd backend
gcloud run deploy backend --source .Environment Variables
# Frontend (.env.local)
NEXT_PUBLIC_API_URL=https://api.example.com
NEXT_PUBLIC_SUPABASE_URL=https://xxx.supabase.co
NEXT_PUBLIC_SUPABASE_ANON_KEY=eyJ...
# Backend (.env)
DATABASE_URL=postgresql://...
ANTHROPIC_API_KEY=sk-ant-...
SUPABASE_URL=https://xxx.supabase.co
SUPABASE_KEY=eyJ...---
Critical Rules
---
Related Skills
coding-standards.md - General coding best practicesbackend-patterns.md - API and database patternsfrontend-patterns.md - React and Next.js patternstdd-workflow/ - Test-driven development methodologyCompétences similaires
Explorez d'autres agents de la catégorie Frontend & Expérience UX
legal-advisor
Draft privacy policies, terms of service, disclaimers, and legal
docker-expert
Docker containerization expert with deep knowledge of multi-stage builds, image optimization, container security, Docker Compose orchestration, and production deployment patterns. Use PROACTIVELY for Dockerfile optimization, container issues, image size problems, security hardening, networking, and orchestration challenges.
ai-product
"Every product will be AI-powered. The question is whether you'll build it right or ship a demo that falls apart in production. This skill covers LLM integration patterns, RAG architecture, prompt engineering that scales, AI UX that users trust, and cost optimization that doesn't bankrupt you. Use when: keywords, file_patterns, code_patterns."